III Semester M.Sc. Degree Examination, December 2014
 (RNS) (Y2K11 Scheme)
 MATHEMATICS

M303 : Differential Geometry
Time : 3 Hours
Max. Marks : 80

Instructions : 1) Answer any five questions choosing atleast two from each Part.
 2) All questions carry equal marks.

PART-A

1. a) Define directional derivative of a differentiable function on E^{3}.

If $V_{p}=\left(v_{1}, v_{2}, v_{3}\right)_{p}$ in any tangent vector to E^{3} at $P \in E^{3}$, then prove that for any real valued differentiable function fon E^{3}, directional derivative of f by V_{p} in $V_{p}[f]=\sum_{i=1}^{3} v_{i} \frac{\partial f}{\partial x_{2}}(p)$.

Use the above the formula to compute $\mathrm{Vp}[\mathrm{f}]$
for $f=e^{x}$ cosy, $V p: P=(2,0,-1), V=(2,-1,3)$.
b) Let $\mathrm{h}(\mathrm{s})=\log \mathrm{s}$ on $\mathrm{J}: \mathrm{s}>0$. Reparametrize the curve $\alpha(\mathrm{t})=\left(\mathrm{e}^{\mathrm{t}}, \mathrm{e}^{-\mathrm{t}}, \sqrt{2} \mathrm{t}\right.$ using h. Verify the formula $B^{\prime}(s)=\alpha^{\prime}(h(s)) \frac{d h}{d s}(s)$, were B in a reparametrisation of α by h .
2. a) Let $f(x, y, z)=\left(x^{2}-1\right) d y+\left(y^{2}+2\right) z$. Find the $1-$ form df and evaluate it an $V_{p}: V=(1,2,-3), P=(0,-2,1)$.
b) Let $\phi=y z d x+d z, \psi=\sin z d z+\cos z d y$ be two $1-$ forms on E^{3}. Then compute $\phi \wedge \psi$ and $d(\phi \wedge \psi)$. Verify the formula $d(\phi \wedge \psi)=d \phi \wedge \psi-\phi \wedge d \psi$.
c) Let $F: E^{3} \rightarrow E^{3}$ be a mapping defined by $F(x, y, z)=(x \cos y, x \sin y, z)$.

Then compute $F_{* p} V_{p}$ for $\mathrm{Vp}: \mathrm{V}=(2,-1,3), \mathrm{P}=(0,0,1)$.
3. a) Derive Frenet formulae for a unit speed curve.
b) Compute the Frenet apparatus T, N, B, K, T for a unit speed curve $\beta(s)=\left(\frac{4}{5} \cos s, 1-\sin s, \frac{-3}{5} \cos s\right)$ and show that it is a circle.
c) With usual notations derive the formula $\nabla \mathrm{v}_{\mathrm{p}} \mathrm{W}=\sum \mathrm{V}_{\mathrm{p}}\left[\mathrm{w}_{\mathrm{i}}\right] \mathrm{U}_{\mathrm{i}}(\mathrm{p})$, where $W=\left(w_{1}, w_{2}, w_{3}\right)$ is a vector field on E^{3}. Use it to compute $\nabla v_{p} W$ for $W=x^{2} V_{1}+y V_{2}$ and $V_{p}: V=(1,-1,2)$ and $P=(1,3,-1)$.
4. a) Let E_{1}, E_{2}, E_{3} be a frame field on E^{3} with the attitude matrix $A=\left(a_{i j}\right)$. Then show that the matrix of connection forms $W=\left(W_{i j}\right)$ of E_{1}, E_{2}, E_{3} is given by $W=(d A) A^{t}$, where $d A$ is the differential and A^{t} is the transpose of A. Use the formula to compute connection forms of a cylindrical frame field.
b) Prove the following :
i) an orthogonal transformation on E^{3} is an isometry.
ii) an isometry $F: E^{3} \rightarrow E^{3}$ with $F(0)=0$ is an orthogonal transformation.

PART-B
5. a) Define:
i) Proper patch
ii) Simple surface.

If $X: E^{2} \rightarrow E^{3}$ is defined by $X(u, v)=(u+v, u-v, u v)$, then prove that X is a proper patch in E^{3} and its image is the surface $z=\frac{x^{2}-y^{2}}{4}$.
b) Let g be a real valued differentiable function on E^{3} and ' c ' be a real number. Show that the subset $M=\left\{(x, y, z) \in E^{3} / g(x, y, z)=c\right\}$ is a surface in E^{3} if $d g \neq 0$ at any point of M. Hence deduce that a sphere is a surface in E^{3}.
6. a) Obtain parametrization of a cylinder.
b) Let P be any point in a surface M and X be a patch in M with $P=X\left(u_{0}, v_{0}\right)$. Show that a tangent vector V_{p} to E^{3} at P is tangent to M at P if and only if V_{p} is a linear combination of $X_{u}\left(u_{0}, v_{0}\right)$ and $X_{u}\left(u_{0}, v_{0}\right)$.
c) With usual notations, prove
i) $F^{*}(\xi \wedge \eta)=F^{*}(\xi) \wedge F^{*} \eta$
ii) $F^{*}(d \xi)=d\left(F^{*} \xi\right)$.
7. a) Define shape operator of a surface at a point. Find the shape operator of the saddle surface at $(0,0,0)$.
b) Show that every point on a sphere is a umbilic point.
c) With usual notations prove $\mathrm{K}=\mathrm{k}_{1} \mathrm{k}_{2}, \mathrm{H}=\mathrm{y}_{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)$.
8. a) Prove that the Gaussian and mean curvatures of a surface are given by

$$
\begin{aligned}
& \mathrm{K}=\frac{\left|\begin{array}{cc}
\text { SV.V } & \text { SV.W } \\
\text { SW.V } & \text { SW.W }
\end{array}\right|}{\left|\begin{array}{cc}
\text { V.V } & \text { V.W } \\
\text { W.V } & \text { w.w }
\end{array}\right|}, \\
& H=\frac{\left|\begin{array}{cc}
\text { SV.V.v } & \text { SV.w } \\
\text { w.w }
\end{array}\right|+\left|\begin{array}{cc}
\text { V.v } & \text { v.w } \\
\text { sw.v } & \text { sw.w }
\end{array}\right|}{2\left|\begin{array}{cc}
\text { v.v } & \text { v.w } \\
\text { w.v } & \text { w.w }
\end{array}\right|}
\end{aligned}
$$

b) If X is a patch in a surface M in E^{3}, then prove that the fundamental magnitudes $l, \mathrm{~m}, \mathrm{n}$ are given by $l=\mathrm{U} . \mathrm{X}_{\mathrm{uu}}, \mathrm{M}=\mathrm{U} . \mathrm{X}_{\mathrm{uv}}, \mathrm{n}=\mathrm{U} . \mathrm{X}_{\mathrm{vv}}$, where U is a unit normal vector field on M. Hence compute the Gaussian and mean curvatures of $X(u, v)=(u \cos v, u \sin v, b v), b \neq 0$.
c) Determine the geodesics in
i) plane
ii) sphere.

