6

b) Let h(s) = log s on J : s > 0. Reparametrize the curve $\alpha(t) = (e^t, e^{-t}, \sqrt{2} t)$

1. a) Define directional derivative of a differentiable function on E³.

If $V_p = (v_1, v_2, v_3)_p$ in any tangent vector to E^3 at $P \in E^3$, then prove that for any real valued differentiable function for E^3 directional derivative of f by V_p

in
$$V_p[f] = \sum_{i=1}^{3} v_i \frac{\partial f}{\partial x_2}$$
 (p).

Use the above the formula to compute Vp [f] for $f = e^x \cos y$, Vp : P = (2, 0, -1), V = (2, -1, 3). 10

III Semester M.Sc. Degree Examination, December 2014 (RNS) (Y2K11 Scheme) MATHEMATICS M303 : Differential Geometry

Time: 3 Hours

Instructions: 1) Answer any five questions choosing atleast two from each Part. 2) All questions carry equal marks.

PART - A

- using h. Verify the formula $B'(s) = \alpha'(h(s)) \frac{dh}{ds}(s)$, were B in a reparametrisation of α by h.
- 2. a) Let $f(x, y, z) = (x^2 1) dy + (y^2 + 2) z$. Find the 1 form df and evaluate it an V_{p} : V = (1, 2, -3), P = (0, -2, 1). 5
 - b) Let $\phi = yzdx + dz$, $\psi = sinz dz + cosz dy be two 1 forms on E³. Then$ compute $\phi \land \psi$ and $d(\phi \land \psi)$. Verify the formula $d(\phi \land \psi) = d\phi \land \psi - \phi \land d\psi$. 6
 - c) Let $F : E^3 \to E^3$ be a mapping defined by F (x, y, z) = (x cosy, x sin y, z). Then compute $F_{*p} V_p$ for Vp : V = (2, -1, 3), P = (0, 0, 1).5

P.T.O.

PG – 139

Max. Marks: 80

PG - 139

- 3. a) Derive Frenet formulae for a unit speed curve.
 - b) Compute the Frenet apparatus T, N, B, K, T for a unit speed curve

$$\beta(s) = \left(\frac{4}{5}\cos s, 1 - \sin s, \frac{-3}{5}\cos s\right) \text{ and show that it is a circle.}$$

- c) With usual notations derive the formula $\nabla v_p W = \sum V_p[w_i] U_i$ (p), where $W = (w_1, w_2, w_3)$ is a vector field on E³. Use it to compute $\nabla v_p W$ for $W = x^2 V_1 + y V_2$ and $V_p : V = (1, -1, 2)$ and P = (1, 3, -1).
- 4. a) Let E_1 , E_2 , E_3 be a frame field on E^3 with the attitude matrix $A = (a_{ij})$. Then show that the matrix of connection forms $W = (W_{ij})$ of E_1 , E_2 , E_3 is given by $W = (dA) A^t$, where dA is the differential and A^t is the transpose of A. Use the formula to compute connection forms of a cylindrical frame field.
 - b) Prove the following :
 - i) an orthogonal transformation on E^3 is an isometry.
 - ii) an isometry $F : E^3 \rightarrow E^3$ with F(0) = 0 is an orthogonal transformation. **7**

- 5. a) Define :
 - i) Proper patch
 - ii) Simple surface.

If $X: E^2 \rightarrow E^3$ is defined by X (u, v) = (u + v, u - v, uv), then prove that X is

a proper patch in E³ and its image is the surface $z = \frac{x^2 - y^2}{4}$.

b) Let g be a real valued differentiable function on E^3 and 'c' be a real number. Show that the subset $M = \{(x, y, z) \in E^3 / g(x, y, z) = c\}$ is a surface in E^3 if dg \neq 0 at any point of M. Hence deduce that a sphere is a surface in E^3 . (6+4)

5

9

6

- 6. a) Obtain parametrization of a cylinder.
 - b) Let P be any point in a surface M and X be a patch in M with P = $X(u_0, v_0)$. Show that a tangent vector V_p to E^3 at P is tangent to M at P if and only if V_p is a linear combination of $X_u (u_0, v_0)$ and $X_u (u_0, v_0)$. **6**

-3-

c) With usual notations, prove

i)
$$F^{*}(\xi \land \eta) = F^{*}(\xi) \land F^{*}\eta$$

- ii) F * (dξ) = d (F * ξ).
- 7. a) Define shape operator of a surface at a point. Find the shape operator of the saddle surface at (0, 0, 0).
 - b) Show that every point on a sphere is a umbilic point.
 - c) With usual notations prove $K = k_1 k_2$, $H = y_2 (k_1 + k_2)$.
- 8. a) Prove that the Gaussian and mean curvatures of a surface are given by

	SV.V	SV.W		SV.V	SV.	w _	V.V	V.W
K =	sw.v	SW.W		w.v	w.v	v +	sw.v	sw.w
	V.V	V.W	,		2	v.v	v.w	
	w.v	w.w	•		~	w.v	w.w	

- b) If X is a patch in a surface M in E^3 , then prove that the fundamental magnitudes l, m, n are given by l = U. X_{uu} , $M = U.X_{uv}$, n = U. X_{vv} , where U is a unit normal vector field on M. Hence compute the Gaussian and mean curvatures of X (u, v) = (u cos v, u sin v, bv), $b \neq 0$.
- c) Determine the geodesics in
 - i) plane
 - ii) sphere.

PG – 139

4

6

6

6

4

4

7

5

BMSCW